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Abstract—The expected future increase in air traffic 
requires the development of innovative algorithms and 
software systems that will automate several functions 
currently performed by controllers. Extensive verification 
and validation will be central to ensuring the correct 
operation of these safety critical systems.  Separation 
assurance, for example, is concerned with maintaining a 
safe distance between any two aircrafts. It is a complex, 
real-time problem with many variables and uncertainties, 
and failure could be disastrous. This paper reports on results 
from a project at NASA Ames that studies the role of 
validation and verification technologies in the development 
of future air-traffic control software systems. It discusses 
how advanced V&V technologies can contribute to the 
production of robust software prototypes together with 
measurable criteria that ensure that the industrial 
implementations conform to them. It then presents early 
results obtained from the application of test case generation 
techniques to the TSAFE component for tactical separation 
assurance. 
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1. INTRODUCTION 
The traffic on U.S. commercial airlines is predicted to 
increase by the equivalent of two major hub airports each 
year through 2020. NextGen (Next Generation Air 
Transportation System) is a NASA research program that 
addresses this increasing load on the air traffic control 
system through innovative algorithms and software systems. 
The seminal work produced by this program should ideally 
be in the form of reference artifacts that can be adopted by 
industry. Software verification and validation will be critical 
to this effort. 

This paper discusses a joint project between NextGen and 
Robust Software Engineering (RSE) groups at NASA Ames 
that studies the role of validation and verification 
technologies in the development of future air-traffic control 
software systems. More specifically, the project aims at the 
development of techniques and processes that 1) ensure the 
production of robust software prototypes, and 2) provide 
measurable criteria for checking (automatically) the 
conformance of industrial implementations to these 
prototypes.      

We will develop techniques that are applicable to several 
classes of air-traffic control software, and therefore plan on 
studying several such systems. However, we have focused 
our initial efforts on testing for the TSAFE (Tactical 
Separation Assisted Flight Environment) NextGen 
component. TSAFE is the part of NextGen which seeks to 
predict and resolve loss of separation in the 30 second to 3 
minute time horizon.  

Our study of the TSAFE component started by applying off-
the-shelf tools to measure test coverage achieved with 
existing tests applied to TSAFE. The purpose of this step 
was to assess the complexity of generating appropriate tests 
for this type of system. The results made it clear that 
automated support would be crucial in generating tests that 
would ensure that the component has been tested enough, as 
well as meaningful regression tests that can be used for 
checking conformance of industrial implementations to this 
prototype.  

We will discuss our preliminary experiments with automatic 
test case generation techniques for modules of the TSAFE 
code.  These techniques are implemented in Symbolic 
Pathfinder (SP), an extension of the Java Pathfinder (JPF) 
model checking tool.  SP adds symbolic execution 
capabilities to JPF's well developed state space exploration 
techniques. Through advanced constraint solving modules, 
SP is able to automatically generate input values that will 
ensure the traversal of targeted paths in the program.  We 
will also review the challenges that this particular 
application poses to SP due to its complex numerical 
computations. 

The remainder of the paper is organized as follows. Section 
2 is an overview of the TSAFE system, and the verification 
challenges that it presents. Section 3 discusses the role that 
we propose for V&V techniques in the development of 
NextGen algorithms and software systems. It presents 
symbolic execution as a means of automatically generating 
high quality software tests, and reviews the Symbolic 
Pathfinder extension to the JPF. Section 4 describes the 
application of SPF to TSAFE, our preliminary results and 
challenges that we have faced. Section 5 summarizes related 
work, and Section 6 concludes the paper and presents plans 
for future work. 



 

2. TSAFE  
Airspace capacity is the number of flights that can fly safely 
in a given volume of airspace. In the current air traffic 
system, that capacity is limited to approximately 15 flights 
per sector (or controller) due to cognitive limitations of air 
traffic controllers using radar displays and voice 
communication with pilots. The large potential increase in 
air traffic in future decades is expected to require 
automation of the separation assurance functions that are 
currently performed by controllers. Separation assurance is 
a complex, real-time problem with many variables and 
uncertainties, and failure could be disastrous. The challenge 
is to develop an automated system that can keep the 
probability of collision acceptably low, despite the 
complexity and unpredictability of the traffic patterns, even 
as traffic doubles or triples. 

NASA Ames is developing the Advanced Airspace Concept 
(AAC) \cite{[AAC],AAC2} to meet that challenge. AAC 
comprises two stages of separation assurance, plus standard 
collision avoidance, which constitutes a third stage. The first 
stage is a strategic auto-resolver \cite{AutoRes} that 
attempts to detect and resolve conflicts up to approximately 
20 minutes in advance. The second stage is a simpler system 
called the Tactical Separation-Assured Flight Environment 
(TSAFE), which is intended to backup the strategic auto-
resolver and handle any conflicts left undetected or 
unresolved with loss of separation (LoS) predicted to occur 
within approximately two minutes. If TSAFE fails to 
resolve a conflict, the Traffic Alert and Collision Avoidance 
System (TCAS) \cite{TCAS} is available on most 
commercial aircraft to prevent a collision using vertical 
maneuvers. 

Because automated conflict detection and resolution are 
considered safety critical, TSAFE is intentionally designed 
to be as simple as possible, while still capable of resolving 
conflicts with high reliability. Thus, TSAFE generates 
relatively simple maneuvers consisting of altitude, heading, 
or speed changes, which could be used as controller 
advisories, but are intended ultimately to be automatically 
uplinked to the flight deck. For simplicity, TSAFE does not 
attempt to return the maneuvered flights back to their 
planned routes after the conflict passes. Because the 
conflicts are imminent, however, maneuver delays and flight 
dynamics must be accounted for. TSAFE must also 
guarantee that conflicts are resolved without creating new 
conflicts with nearby traffic. In addition, TSAFE must be 
designed to interact safely with TCAS. 

In addition to the far-term objective of tactical conflict 
resolution, TSAFE has also been developed and tested for a 
near-term application as a tactical conflict alerting aid for 
controllers \cite{TSAFE,TSAFE2}. The objective is to 
eventually replace Conflict Alert, the legacy system for 
alerting controllers to imminent conflicts in the US. Like 
Conflict Alert, TSAFE uses constant-velocity (``dead-
reckoning'') state projections, but unlike Conflict Alert, it 

also uses intent information in the form of the flightplan 
route and the assigned altitude. TSAFE has been tested 
extensively with actual air traffic data, including archived 
tracking data for 100 operational errors (losses of separation 
officially attributed to controller error). TSAFE provided 
timely alerts more consistently than Conflict Alert. TSAFE 
was also found to produce substantially fewer false alerts 
than Conflict Alert. 

The tests of TSAFE using archived operational errors and 
other traffic scenarios go a long way toward establishing 
credibility in an operational environment, but more testing is 
needed to guarantee the reliability of TSAFE in actual 
operation. In particular, traffic scenarios and encounter 
geometries need to be generated to test any or all ``corner'' 
cases that could arise in practice. [more?] 

TSAFE Interface 

The basic inputs and outputs of TSAFE are shown in Fig. 
\ref{fig:TSAFE-IO}. The primary inputs are radar tracking 
data and barometric altitude reports from each flight via the 
standard Mode C datalink. The assigned altitude of each 
flight is also available to TSAFE via altitude amendments 
entered by the controller, and the flightplan routes are 
available through the route amendments entered by the 
controller. The aircraft type and other basic information for 
each flight are also provided to TSAFE through basic flight 
registration. TSAFE can operate without aircraft type 
information, but it's climb and descent predictions will not 
be as accurate. Current wind data can also be provided, if 
available. The output of the near-term version of TSAFE is 
the predicted conflicts, whereas the output of the far-term 
version with automated conflict resolution is the 
recommended resolution maneuvers. 

 

The inputs and outputs of TSAFE are provided by function 
calls. For file replay, each line of text in the input file is a 
data record that triggers a call to the corresponding input 
function. The functions interfaces and data records are 
specified in detail in the TSAFE interface control document 
\cite{ICD}. The input function names and the corresponding 

Figure 1: TSAFE Inputs and outputs 



 

data record codes are shown in Table \ref{tbl:TSAFE}. 
Each function call applies to one particular flight, which is 
specified by the flight identification argument. All of the 
arguments of the input functions are basic data types such as 
integers, floating point numbers, and character strings. 

Function Function Name Code 

flight registration registerFlight FLT 

route amendment amendRoute RTE 

altitude amendment amendAltitude ALT 

radar track update radarTrack TRK 

flight deletion deleteFlight DEL 

wind data update loadWindFile WND 

Table 1: TSAFE input function names and corre-
sponding data record type codes 

 

TSAFE Architecture 

TSAFE is implemented as a single instance of a ``TSAFE'' 
class that is used to manage the entire process. The TSAFE 
object contains a list of instances of the ``Flight'' class, one 
for each actual flight being tracked. Each Flight object, in 
turn, contains an instance of the ``State'' class and the 
``Flightplan'' class, each of which will be explained shortly. 
The TSAFE object has methods for predicting trajectories 
and checking for conflicts. To account for uncertain pilot 
intent, TSAFE generates both constant-velocity (state-
based) and flightplan-based trajectory predictions for each 
flight, and it checks all combinations for conflicts. 

The ``State'' class represents the dynamic state of a flight in 
terms of a time-tagged position and velocity. The State class 
provides a method for computing the ``dead-reckoning'' 
(constant-velocity) horizontal path and altitude predictions. 
The predictions are stored as a series of points at regular, 
synchronous intervals of time (default: 6 seconds). The state 
class also contains many utility functions for various basic 
tasks such as time projection and synchronization, 
computation of current separation and predicted minimum 
separation at constant velocity. 

The ``Flightplan'' class represents the planned route and 
performs computations associated with that route. It takes a 
list of two-dimensional route waypoints and constructs a 
nominal path with tangent turn arcs of a constant radius 
based on a coordinated turn at a specified bank angle 
(default: 20 degrees). The resulting route consists of an 

alternating sequence of straight and turn segments, each 
type represented as an instance of a small utility class. The 
Flightplan class has a function that accepts the current state 
(position and velocity) of the flight and constructs a 
predicted trajectory that converges to the rounded path at a 
specified convergence angle (default: 10 degrees). It also 
has a function to compute the cross-track and course error of 
a given state. Those errors are used to determine the 
prediction look-ahead time of the state-based (constant-
velocity) and flightplan-based trajectories. The closer the 
flight is following its flightplan, the longer is the prediction 
time for the flightplan-based trajectory prediction and the 
shorter is the state-based prediction. 

The ``Flight'' class represents a single flight. Each Flight 
object contains a State object and a Flightplan object. It uses 
the State object to generate the constant-velocity 
predictions, and it uses the Flightplan object to generate the 
flightplan-based predictions. The Flightplan class also has a 
method for checking for conflict between a pair of flights. 
That method is called by the TSAFE object for each pair of 
flights. The Flight class uses the ACmodels class to 
compute predicted climb and descent rates in response to 
altitude amendments entered by the controller. 

To check for conflicts between a pair of flights, the Flight 
class uses the ``PotentialTrajectories'' class. The 
PotentialTrajectories class accepts a list of horizontal 
trajectory predictions and a list of vertical predictions for 
each flight. The lists currently consist of the constant-
velocity predictions and the flightplan-based predictions, but 
other types of predicted trajectories could be added later if 
necessary. The vertical predictions are reduced to an altitude 
range at each point in predicted time and superimposed over 
both of the horizontal trajectories. All four combinations of 
trajectories are then checked for conflict. An trajectory 
bounding procedure is used to eliminate the detailed 
checking for conflicts if the two flights are far apart. 

An experimental class that can optionally be used by each 
Flight object is the ``TurnDetection'' class. If a flight is not 
following its planned route, this class analyzes the tracking 
history and attempts to detect the initiation of an unplanned 
turn. An unplanned turn is a turn for which the controller 
enters no data into the Host computer. Such turns occur in 
holding patterns, for example. They also occur when a flight 
is turned to resolve a conflict, or when a flight is turned to 
get it back on its planned route after a conflict has been 
resolved. When an unplanned turn is detected, a predicted 
trajectory is constructed in which the turn continues for 
some angle. The challenge here is to avoid false alerts due 
to noise in the radar tracking data, which can occasionally 
be severe. When improved surveillance methods become 
available in the future, this class should be more effective 
and produce fewer false alerts. 

In the interest of brevity, several other utility classes will not 
be discussed here. Also, the architecture for conflict 
resolution will not be discussed.  



 

3. TEST CASE GENERATION 
Test Case Generation for NextGen 

(add picture from slides and extend this text) 

1. Provide synthetic test data and test oracles that will 
thoroughly and automatically verify TSAFE, 

2. Provide support for extended notions of coverage, and 

3. Reduce the size of the test suite so that it retains the 
necessary coverage while focusing on the most 
interesting and meaningful tests. 

For test case generation we use Symbolic PathFinder 
\cite{SPF}, a recent extension to JPF that combines 
symbolic execution and constraint solving for automated 
test case generation. Symbolic PathFinder implements a 
symbolic execution framework for Java byte-code. It can 
handle mixed integer and real inputs, as well as multi-
threading and input pre-conditions.  We describe symbolic 
execution and the Symbolic PathFinder tool in more detail 
below. 
 
Symbolic Execution 

Symbolic execution 
\cite{King76SymbolicExecutionProgramTesting} is a form 
of program analysis that uses symbolic values 
instead of actual data as inputs and symbolic expressions to 
represent the values of program variables. As a result, the 
outputs computed by a program are expressed as a function 
of the symbolic inputs. The state of a symbolically executed 
program includes the (symbolic) values of program 
variables, a path condition ($PC$), and a program counter. 
The path condition is a boolean formula over the symbolic 
inputs, encoding the constraints which the inputs must 
satisfy in order for an execution to follow the particular 
associated path. These conditions can be solved (using off-
the-shelf constraint solvers) to generate test cases (test input 
and expected output pairs) guaranteed to exercise 
the analyzed code. The paths followed during the symbolic 
execution of a program are characterized by a symbolic 
execution tree. 

\begin{figure} 
\begin{verbatim} 
[1] if ((pressure < pressure_min) || 
[2]     (pressure > pressure_max)) { 
[3] ... /* abort */ 
    } else { 
[4] ... /* continue */ 
    } 
\end{verbatim} 
\caption{Example for symbolic execution.} 
\label{fig:symexe} 
\end{figure} 
 

To illustrate the difference between concrete and symbolic 
execution, consider the example in 
Figure~\ref{fig:symexe}. The code checks if the value of 
pressure 
(input variable $pressure$) is within min and max allowed 
values (input variables $pressure\_min$ and 
$pressure\_max$). In concrete execution (e.g. testing) one 
executes the code on given concrete inputs. For example, for 
$pressure=460$, $pressure\_min=640$, 
$pressure\_max=960$, only one path through the code will 
be executed, corresponding to the first disjunct in the {\tt if} 
statement being true. In contrast, symbolic execution starts 
with symbolic input values ($pressure=Sym1$, 
$pressure\_min = MIN$ and $pressure\_max=MAX$). 
Symbolic execution will analyze three paths through the 
program and it will generate three path conditions, 
according to different possibilities in the code: 
 
\noindent $PC_1: Sym_1 < MIN$,\\ 
$PC_2: Sym_1 > MAX$,\\ 
$PC_3: Sym_1 \geq MIN \wedge Sym_2 \leq MAX$ 
 
Concrete values for the inputs that satisfy ("solve") the 
path conditions are then found with the help of a constraint 
solver and those solutions are used as concrete test inputs 
that are guaranteed to give full path coverage for this code. 

Symbolic PathFinder 

Symbolic PathFinder implements a non-standard interpreter 
for byte-codes on top of JPF. The symbolic information is 
stored in attributes associated with the program data and 
it is propagated on demand, during symbolic execution. The 
analysis engine of JPF is used to systematically generate 
and explore the symbolic execution tree of the 
program. JPF is also used to systematically analyze thread 
interleavings and any other forms of non-determinism that 
might be present in the code; furthermore JPF is used to 
check properties of the code during symbolic execution. 
Off-the-shelf constraint solvers/decision procedures {\tt 
choco} and {\tt IASolver} \cite{DP} are used to solve 
mixed integer and real constraints. We handle loops by 
putting a bound on the model-checker search depth and/or 
on the number of constraints in the path conditions. 

4. CASE STUDY: APPLICATION OF TEST 
GENERATION/SPF TO TSAFE  

As was described in Section 1, the prototype for the TSAFE 
algorithms has been written in an object-oriented style with 
the TSAFE class managing the calculations and various 
other classes implementing key parts of the algorithms.   

The TSAFE prototype is written in the Python programming 
language. Python is a widely used scripting language that 
makes prototyping quick and easy. 



 

During its development, TSAFE has been tested with data 
derived from real air traffic control data.  Being derived 
from real data, the test data has the virtue of accurately 
depicting real aircraft operations. However, because loss of 
separation (LOS) occurs very rarely in practice, it only tests 
a limited number of LOS scenarios and limited parts of the 
code. 

We verified this by using a standard off-the-shelf Python 
coverage tool, coverage.py [PCC], to measure actual code 
coverage under the real-data tests.  coverage.py, like most 
commonly available code coverage tools, measures only 
statement coverage.  It does not compute more sophisticated 
coverage statistics such as MC/DC coverage or path 
coverage. 

The results are shown in Table 4.1.  The code coverage from 
the tests derived from the real data ranged from poor to 
good.  In one case, the TrackFilter class, 99% of the 
statements were executed and in several other cases, more 
than 85% coverage was attained.  But in many classes the 
coverage was spotty at best.  

Table 4.1  Code Coverage for Real Test Data 

Class Statements Executed Coverage 

ACmodels 189 163 86% 

Flight 465 413 88% 

FlightRes 197 20 10% 

Flightplan 332 220 66% 

RingBuffer 50 26 52% 

State 255 135 52% 

TSAFE 103 80 77% 

TSAFEreplay 228 166 72% 

TSAFEres 127 20 15% 

TrackFilter 115 114 99% 

Trajectory 351 308 87% 

Turnlogic 204 17 8% 

 

Since the prototype is still under development, this was to 
be expected for some of the classes.  (There is newly written 
code that has not yet been tied in to the rest of the system.)  
But even allowing for this, it is clear that more extensive 
test suites are needed.  We therefore applied SPF's model 

checking and symbolic execution capabilities to the TSAFE 
code. 

Since SPF is a model checker for Java bytecode, the Python 
code was first translated to Java.  This process was 
straightforward -- since the Python code was well 
structured, it was possible to do a simple, almost mechanical 
translation.  While doing the translation, we were careful to 
preserve the logical structure of the original code so that 
tests generated from the Java code would be meaningful to 
the Python code.   

Even though the TSAFE prototype is well structured, it is 
still a complex program: it necessarily uses many complex 
data types, has many loops and complex logic, and uses 
floating point arithmetic extensively.  All of these present 
challenges to model checkers. 

In our initial investigations, we have therefore taken a 
bottom-up approach, applying SPF to the lowest level 
routines.  This allows us to concentrate our initial work on 
addressing the issues of model checking floating point code 
and complex data structures.   

Once the SPF extensions for model checking and symbolic 
execution of floating point code described in section 3 were 
added, we applied SPF to the low level methods 
aircraft_turn_status in the class TurnLogic and currentLOS 
in the class “Flight”.  These methods were described in 
Section 1.  Recall that aircraft_turn_status determines 
whether an aircraft should be turning left, right, or going 
straight. currentLOS determines whether two aircraft have a 
loss of separation. 

These methods were chosen because (1) they used non-
trivial floating point operations, (2) they contained 
significant program logic (for example, multiple nested if 
statements), and (3) their behavior depended on both the 
methods' input parameters and their objects' internal state. 

The methods required some modification before they could 
be run under SPF.  In the case of aircraft_turn_status, the 
original method returned a string as its result and depended 
on a string instance variable.  Since SPF does not yet handle 
strings, we converted these parameters and variables to 
integers.  This worked well because the strings only 
represented three distinct values, LEFT, RIGHT, and 
STRAIGHT.  Some of the code from this method is shown 
in Figure 4.1. 



 

Figure 4.1: aircraft_turn_status code

 

 

SPF generated approximately 350 test cases for 
aircraft_turn_status. These tests will exercise all paths 
though the method.  If a less stringent coverage metric is 
required (e.g. statement coverage or branch coverage), then 
the run could be tuned and would produce fewer test cases.  
Some of the test cases generated by SPF are shown in Table 
4.2.  These 350+ test cases took about two minutes to 
generate. 

Test 
Case 

p0 p1 p2 turnStatus Return 
Value 

1 -5008.0 -5006.5 don't 
care 

Straight Left 

2 -5016.0 -13.0 -5006.5 Straight Left 

3 -5016.0 -13.0 -13.0 Straight Straight 

4 -7508.0 -13.0 4971.0 Straight Straight 

                                             . . . 

347 -5005.0 4995.0 don't 
care 

Left Left 

348 -10.0 4995.0 don't 
care 

Left Straight 

349 -5.0 4995.0 don't 
care 

Left Straight 

350 0.0 4995.0 don't 
care 

Left Straight 

351 5000.0 4995.0 don't 
care 

Left Straight 

 

The method currentLOS required somewhat more extensive 
changes, but this time the changes were required because of 
limitations in the constraint solver.  (Recall that any given 

constraint solver over real numbers will have limitations 
because the general constraint solving problem for reals is 
undecidable.) In our case the constraint solver cannot handle 
constraints involving square roots.   

currentLOS uses square roots because it must compute the 
distance between two points.  However, the method only 
uses that distance to do comparisons with other numbers.  
So the square root can be eliminated by using the square of 
the distance in place of the distance. 

Once the changes were made, we were able to run SPF on 
currentLOS and produce our suite of test cases for all paths 
through the code. However, the logic in currentLOS is fairly 
complex and requiring complete coverage of all possible 
paths produces well over one hundred megabytes of test 
cases.   

The results of automatic test generation for the currentLOS 
method illustrate the point that full path coverage is often 
not a practical requirement for testing, even for systems 
requiring high reliability. In practice, a less stringent form of 
code coverage is required.  As we scale up to larger and 
more complex methods we will necessarily need to tune 
SPF for less demanding coverage metrics. 

5. RELATED WORK 
Work on symbolic execution. 

Nancy Levenson’s work on TSAFE. 

Work by Tevfik Bultan and Others on TSAFE. 

Work focusing on algorithms by Langley partners. 

  

6. CONCLUSIONS & FUTURE WORK 
 
 
 

  _initial_turn_active = false; 
 
  if (STRAIGHT == _turnStatus) { 
    turn_status = _activate_ts(p0, p1, p2); 
    _initial_turn_active = true; 
 
  } else if (RIGHT == _turnStatus) { 
    double phi_stop 
      = _angle_to_stop_turn(_turnStatus, p1); 
 
    if (p0 > bank_turn_crit_next) 
      turn_status = RIGHT; 
 
    else if (p0 > 0.0 && p01 > 40.0) 
    ... 
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